

May 28, 2003

Choosing SQL Server 2000 Data Types
By Alexander Chigrik

Introduction

Choosing an appropriate data type is very important, because the errors made in a

table design can result in large performance degradation. These problems often

surface later, when a large amount of data is inserted. In this article, I want to tell

you about built-in and user-defined data types, how SQL Server 2000 stores data on
a data page, and show some general tips to choose an appropriate data type.

Built-in data types

In Microsoft SQL Server 2000, each object (such as column, variable, or parameter)

has a related data type, which is an attribute that specifies the type of data that the
object can hold.

SQL Server 2000 ships with 27 built-in (system) data types. They are:

Data Types Description

bigint Integer data from -2^63 through 2^63-1

int Integer data from -2^31 through 2^31 - 1

smallint Integer data from -2^15 through 2^15 - 1

tinyint Integer data from 0 through 255

bit Integer data with either a 1 or 0 value

decimal Fixed precision and scale numeric data from -10^38 +1 through 10^38 -1

numeric Fixed precision and scale numeric data from -10^38 +1 through 10^38 -1

money Monetary data values from -2^63 through 2^63 - 1

smallmoney Monetary data values from -214,748.3648 through +214,748.3647

float Floating precision number data from -1.79E + 308 through 1.79E + 308

real Floating precision number data from -3.40E + 38 through 3.40E + 38

datetime
Date and time data from January 1, 1753, through December 31, 9999,
with an accuracy of 3.33 milliseconds

smalldatetime
Date and time data from January 1, 1900, through June 6, 2079,
with an accuracy of one minute

char Fixed-length character data with a maximum length of 8,000 characters

varchar Variable-length data with a maximum of 8,000 characters

text Variable-length data with a maximum length of 2^31 - 1 characters

nchar Fixed-length Unicode data with a maximum length of 4,000 characters

nvarchar Variable-length Unicode data with a maximum length of 4,000 characters

ntext
Variable-length Unicode data with a maximum length of 2^30 - 1
characters

binary Fixed-length binary data with a maximum length of 8,000 bytes

varbinary Variable-length binary data with a maximum length of 8,000 bytes

image Variable-length binary data with a maximum length of 2^31 - 1 bytes

cursor A reference to a cursor

sql_variant
A data type that stores values of various data types,
except text, ntext, timestamp, and sql_variant

table A special data type used to store a result set for later processing

timestamp
A database-wide unique number that gets updated every time
a row gets updated

uniqueidentifier A globally unique identifier

Some of these data types (bigint, sql_variant, and table) are only available in SQL

Server 2000, while some were supported under the previous SQL Server versions.

User-defined data types

SQL Server 2000 supports user-defined data types too. User-defined data types

provide a mechanism for applying a name to a data type that is more descriptive of

the types of values to be held in the object. Using user-defined data type can make it

easier for a programmer or database administrator to understand the intended use

of any object defined with the data type. The user-defined data types are based on

the system data types and can be used to predefine several attributes of a column,

such as its data type, length, and whether it supports NULL values. To create a user-

defined data type, you can use the sp_addtype system stored procedure or you

could add one using the Enterprise Manager. When you create a user-defined data
type, you should specify the following three properties:

• Data type's name.

• Built-in data type upon which the new data type is based.

• Whether it can contain NULL values.

The following example creates a user-defined data type based on money data type
named cursale that cannot be NULL:

EXEC sp_addtype cursale, money, 'NOT NULL'

GO

Both system and user-defined data types are used to enforce data integrity. It is

very important that we put forth a lot of effort while designing tables: the better you

design your tables, the more time you can work without any performance problems.

In an ideal case, you never will update the structure of your tables.

Tips to choose the appropriate data types

SQL Server 2000 stores data in a special structure called data pages that are 8Kb

(8192 bytes) in size. Some space on the data pages is used to store system

information, which leaves 8060 bytes to store user's data. So, if the table's row size

is 4040 bytes, then only one row will be placed on each data page. If you can

decrease the row size to 4030 bytes, you can store two rows within a single page.

The less space used, the smaller the table and index, and the less the I/O SQL

Server has to perform when reading data pages from disk. So, you should design

your tables in such a way as to maximize the number of rows that can fit into one

data page. To maximize the number of rows that can fit into one data page, you

should specify the narrowest columns you can. The narrower the columns, the less
data that is stored, and the faster SQL Server is able to read and write data.

Try to use the following tips when choose the data types:

• If you need to store integer data from 0 through 255, use tinyint data

type. The columns with tinyint data type use only one byte to store their

values, in comparison with two bytes, four bytes and eight bytes used to

store the columns with smallint, int and bigint data types accordingly. For

example, if you design tables for a small company with 5-7 departments, you

can create the departments table with the DepartmentID tinyint column to

store the unique number of each department.

• If you need to store integer data from -32,768 through 32,767, use

smallint data type. The columns with smallint data type use only two bytes

to store their values, in comparison with four bytes and eight bytes used to

store the columns with int and bigint data types accordingly. For example, if

you design tables for a company with several hundred employees, you can

create an employee table with the EmployeeID smallint column to store the

unique number of each employee.

• If you need to store integer data from -2,147,483,648 through

2,147,483,647, use int data type. The columns with int data type use only

four bytes to store their values, in comparison with eight bytes used to store

the columns with bigint data types. For example, to design tables for a library

with more than 32,767 books, create a books table with a BookID int column

to store the unique number of each book.

• Use smallmoney data type instead of money data type, if you need to

store monetary data values from 214,748.3648 through

214,748.3647. The columns with smallmoney data type use only four bytes

to store their values, in comparison with eight bytes used to store the

columns with money data types. For example, if you need to store the

monthly employee payments, it might be possible to use a column with the

smallmoney data type instead of money data type.

• Use smalldatetime data type instead of datetime data type, if you

need to store the date and time data from January 1, 1900 through

June 6, 2079, with accuracy to the minute. The columns with

smalldatetime data type use only four bytes to store their values, in

comparison with eight bytes used to store the columns with datetime data

types. For example, if you need to store the employee's hire date, you can

use a column with the smalldatetime data type instead of datetime data type.

• Use varchar/nvarchar columns instead of text/ntext columns

whenever possible. Because SQL Server stores text/ntext columns on the

Text/Image pages separately from the other data, stored on the Data pages,

it can take more time to get the text/ntext values.

• Use char/varchar columns instead of nchar/nvarchar if you do not

need to store unicode data. The char/varchar value uses only one byte to

store one character, the nchar/nvarchar value uses two bytes to store one

character, so the char/varchar columns use two times less space to store data

in comparison with nchar/nvarchar columns.

