
Home | Search | Forums | Blogs | FAQ | Newsletter Archive | Site Map | Contact Us | Syndicate Advertise

Article Options

 Rate Article

 Print Article

 Add to Favorites

 Add to 'Articles To

Read'

 Email to Friend

Site Menu

 View Blogs

 View Authors

 Become an Author

 Author Login

Premium Sponsor

 » Home » Security » Encrypting QueryStrings with .NET
 » Home » Web Development » Encrypting QueryStrings with .NET

Encrypting QueryStrings with .NET
by Tiberius OsBurn | Published 09/04/2002 | Security , Web Development | Rating:

Encrypting QueryStrings with .NET

Once upon a time in the tech world, obscurity was security - this being most true

in the early years of the industry, when there were gaping holes in privacy policies

and confidential client information was bandied about from site to site without a

care as to who actually could read the information.

With the new Cryptography classes in .NET, there's absolutely no excuse for not

hiding even the most innocuous user data. If you ever need to 'piggy-back'

information from one web page to another, whether it is within a POST or a GET

parameter, you're passing clear information that anyone can sniff - and that's a

bad thing.

If you're not going to use a session variable for storing end user information,

you're most likely going to keep some sort of State by passing the information to a

cookie or push it around with GET/POST parameters. If you're passing around

any sort of ID or user information like their name, it's better to err on the side of

caution and encrypt the information.

GET Vs. POST

A POST parameter keeps the information out of the URL, but it can still be sniffed

quite easily as it passes in clear text across your network or the Internet. Using

POST will keep the mere curious at bay, as the information is not contained in the

URL - but this will not stop someone determined to snag out your data.

A QueryString parameter passes information within the site's URL. Why would

you even use a QueryString? Well, maybe you need to let your user bookmark a

particular page, or maybe you have to refer directly to a page in a URL via a link -

you can't do either if you're using POST. A QueryString puts data in the URL for

the entire world to see, so if you don't know if the end user is malicious, I'd think

hard about using a QueryString for anything but site-related information.

Be smart and encrypt any and all data you're moving around from page to page, especially if that information could be

used maliciously. You may trust your users, but you still need that extra level of security that clear text GET/POST data

doesn't provide.

Imagine this scenario - you've been passing the customer's ID in the database around in a QueryString, in a URL that

looks like this:

http://yoursite.com?cust_id=29

Tiberius OsBurn

Developer/System Analyst for
The Gallup Organization
(http://www.gallup.com
recently completed a huge data
warehousing project that
archived data and documents
from 1935 to the present
coded in C#, SQL Server and
ASP.NET.

Tiberius has extensive
experience in VB, VB.NET, C#,
SQL Server, ASP.NET and
various other web technologies.
Be sure to visit his site for his
latest articles of interest to .NET
developers.

http://tiberi.us

View all articles by Tiberius

OsBurn...

Page 1 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

You know what a user is going to do? Switch that 29 to a 30 or 12 or some other number, and if you're not checking for

invalid requests, you'll be dishing up some other customer's data.

Enter Encryption

What I was looking for was a quick way to encrypt and decrypt parts of a QueryString - it had to be on the fly, quick and

dirty.

I chose Base64 because it wouldn't throw bizarre characters in my QueryString that I couldn't pass around

know that I'd hit a snag while passing around my encrypted QueryString - Apparently, the Request.QueryString

object interprets the '+' sign as a space! So, with a quick Replace function slapped on my decrypt string, no harm, no

foul.

Symmetric Key

The whole trick to this working is that the QueryString is encrypted and decrypted with the same private key. This is the

secret key - if anyone gets a hold of your key, they can decrypt the data themselves, so keep it a secret!

We're going to use a hard-to-crack 8 byte key, !#$a54?3, to keep parts of our QueryString secret.

Let's Walk through the C# portion of the code:

Notice our two functions that abstract the dirty work that our Encryption64 class. The first, encryptQueryString

is used to encrypt the value of a QueryString. The second, decryptQueryString, is used to decrypt the value of an

encrypted QueryString.

public string encryptQueryString(string strQueryString) {

 ExtractAndSerialize.Encryption64 oES =

 new ExtractAndSerialize.Encryption64();

 return oES.Encrypt(strQueryString,"!#$a54?3");

}

public string decryptQueryString(string strQueryString) {

 ExtractAndSerialize.Encryption64 oES =

 new ExtractAndSerialize.Encryption64();

 return oES.Decrypt(strQueryString,"!#$a54?3");

}

If we wanted to encrypt our QueryString on our first page, we could do something like this:

string strValues = "search term";

string strURL = "http://yoursite.com?search="

 + encryptQueryString(strValues);

Response.Redirect(strURL);

Inside our code-behind in our second page, we pass the contents our QueryString to a variable named

After that, we replace the '+' signs that our wonderful Request.QueryString has replaced with a space. We pass

that string into our function, decryptQueryString, and retrieve the decrypted string.

string strScramble = Request.QueryString["search"];

string strdeCrypt = decryptQueryString(

 strScramble.Replace(" ", "+"));

Page 2 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

Now we've decrypted the value of the QueryString, 'search', and we can do whatever we want with it. The end user is

going to see a URL that looks like:

http://yoursite.com?search=da00992Lo39+343dw

They'll never be able guess what's going on in your QueryString, and if they try to fool around with it, there's no way to

crack the code without knowing the Symmetric key.

VB.NET

Imports System

Imports System.IO

Imports System.Xml

Imports System.Text

Imports System.Security.Cryptography

Public Class Encryption64

 Private key() As Byte = {}

 Private IV() As Byte = {&H12, &H34, &H56, &H78, &H90, &HAB, &HCD

 Public Function Decrypt(ByVal stringToDecrypt As String, _

 ByVal sEncryptionKey As String) As String

 Dim inputByteArray(stringToDecrypt.Length) As Byte

 Try

 key = System.Text.Encoding.UTF8.GetBytes(Left(sEncryptionKey

 Dim des As New DESCryptoServiceProvider()

 inputByteArray = Convert.FromBase64String(stringToDecrypt

 Dim ms As New MemoryStream()

 Dim cs As New CryptoStream(ms, des.CreateDecryptor(key,

 CryptoStreamMode.Write)

 cs.Write(inputByteArray, 0, inputByteArray.Length)

 cs.FlushFinalBlock()

 Dim encoding As System.Text.Encoding = System.Text.Encoding

 Return encoding.GetString(ms.ToArray())

 Catch e As Exception

 Return e.Message

 End Try

 End Function

 Public Function Encrypt(ByVal stringToEncrypt As String, _

 ByVal SEncryptionKey As String) As String

 Try

 key = System.Text.Encoding.UTF8.GetBytes(Left(SEncryptionKey

 Dim des As New DESCryptoServiceProvider()

 Dim inputByteArray() As Byte = Encoding.UTF8.GetBytes(_

 stringToEncrypt)

 Dim ms As New MemoryStream()

 Dim cs As New CryptoStream(ms, des.CreateEncryptor(key,

 CryptoStreamMode.Write)

 cs.Write(inputByteArray, 0, inputByteArray.Length)

 cs.FlushFinalBlock()

 Return Convert.ToBase64String(ms.ToArray())

 Catch e As Exception

 Return e.Message

Page 3 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

Comments

Comment #1 (Posted by wan)

hi..

can you give the full source code in C#??

TQ

Comment #2 (Posted by josh manning)

I second that. Could you please provide the rest of the C# code?

Thanks.

Josh

Comment #3 (Posted by tiberius)

I'll work on getting the code converted sometime within the week.
It shouldn't take all that long!

Thanks...

Tiberius

Comment #4 (Posted by William)

Great article! However, I am unclear where your key (!#$a54?3) came from. Is it generated through another .NET
class?

Comment #5 (Posted by tiberius)

RE: We're going to use a hard-to-crack 8 byte key, !#$a54?3, to keep parts of our QueryString secret.

Actually, I just made the key up. I tried to make it as difficult as a key to crack as I could. You could use an 8 byte
key like: abcdefgh or 12345678 but that would be too easy to crack!

 End Try

 End Function

End Class

Generated using PrettyCode.Encoder

How would you rate the quality of this
article?

Tell us why you rated this way (optional):

1 2 3 4 5

Poor Excellent

Send to Author Post on Site

Submit

Article Rating

The average rating is: No-one else has rated this article yet.

Article rating: 4.03571428571429 out of 5

 28 people have rated this page

Article Score 5515

Page 4 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

Comment #6 (Posted by Josh Manning)

Sorry to bug you about this but do you know if you'll have a chance to add the c# code this week? Thanks.

Comment #7 (Posted by Buck)

Can you translate the C# code to VB.NET? I'm having trouble converting it over. Thanks

Comment #8 (Posted by Jason)

How about everyone that needs to do code conversion go buy the C# to VB.NET code conversion pocket guide
published by O'Reilly.

Before that though I would reccomend learning C# if you're going to be doing much .NET Development. I'm not a C#
guru by any means but I could translate the VB.NET code in this article in my head on the fly.

Jason

Comment #9 (Posted by John Mandia)

Hi all,

Just tried converting it for those of you who want it. Not too familiar with VB.Net so there are some errors in it that
hopefully someone can post the answers to as I have a load of things to do and don't have any spare time to track
these down. Might have time over the weekend. These have been commented.

using System;
using System.IO;
using System.Xml;
using System.Text;
using System.Security.Cryptography;

namespace TotalIngenuity.ManipulateData
{
///
/// This class is used for encrypting and decrypting data such as querystrings.
///

public class DataEncryption
{
public DataEncryption()
{
}

private byte [] key = {};
private byte [] IV = {&H12,&H34,&H56,&H78,&H90,&HAB,&HCD,&HEF}; // This throws an error. Don't know how to
// get these values in c# so if anyone can
// help it will be helping everyone out

public string Decrypt(string stringToDecrypt, string sEncryptionKey)
{
byte [] inputByteArray = new byte[stringToDecrypt.Length];

try
{

key = System.Text.Encoding.UTF8.GetBytes(Left(sEncryptionKey, 8)); // Left is VB.NET Specific Would
// Would Trim achieve the same?
DESCryptoServiceProvider des = new DESCryptoServiceProvider();
inputByteArray = Convert.FromBase64String(stringToDecrypt);
MemoryStream ms = new MemoryStream();

Page 5 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

CryptoStream cs = new CryptoStream(ms, des.CreateDecryptor(key, IV), CryptoStreamMode.Write);
cs.Write(inputByteArray, 0, inputByteArray.Length);
cs.FlushFinalBlock();

System.Text.Encoding encoding; // not too sure if this will work

return encoding.GetString(ms.ToArray());

}
catch(Exception ex)
{
throw ex;
}

}

public string Encrypt(string stringToEncrypt, string SEncryptionKey)
{
try
{
key = System.Text.Encoding.UTF8.GetBytes(Left(SEncryptionKey, 8)); // Left is VB.NET Specific Would
// Trim achieve the same?
DESCryptoServiceProvider des = new DESCryptoServiceProvider();
byte [] inputByteArray = Encoding.UTF8.GetBytes(stringToEncrypt);
MemoryStream ms = new MemoryStream();
CryptoStream cs = new CryptoStream(ms, des.CreateDecryptor(key, IV), CryptoStreamMode.Write);

cs.Write(inputByteArray, 0, inputByteArray.Length);
cs.FlushFinalBlock();

return Convert.ToBase64String(ms.ToArray());

}
catch(Exception ex)
{
throw ex;
}
}

}

}

Comment #10 (Posted by Matias Pelenur)

Encryption does not equal security. In the example you gave where you pass around a customer_id (a bad idea to
start), encrypting it the way you describe with a symmetric key provides almost no improvement. An eavesdropper
can still get the query string and re-send it as it, encrypted, and still gain access to the same customer data (since
the server-side just descrypts it and gets the same content). You could argue that they wouldn't know it was the
customer id that was being passed around (if you encrypt the whole thing), but then that's security by obscurity, and
as you point out that doesn't really work in the long term.

It's always best to use sessions, but that can also be eavesdropped. The only really secure way is to use SSL.
Otherwise, you could keep track of the users's IP address in the session object. If someone tries to use that session
from a different IP, you deny the request.

My 2 cents,
Matias

Comment #11 (Posted by tiberius)

You make some great points, Matias. HTTPS is the way to go in the long run... unfortunately, some of us can't
afford an https certificate. I agree that session variables are nice, but aren't always the way to go
you're working in a web farm environment...

The fact is that if your site is passing around user information, some security is better than no security. HTTPS

Page 6 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

(SSL) is totally the way to go when point-to-point secure communication is needed - but in the meantime, making it
more difficult for the casual 'hacker' to gain access is key.

You've brought up some excellent points.

Comment #12 (Posted by Jason)

Web Farms are no longer an excuse for not using Session variables. Specify a session server.

Comment #13 (Posted by an unknown user)

Matias Pelenur

Comment #14 (Posted by Joe Feser)

Matias Pelenur : Quote
"It's always best to use sessions, but that can also be eavesdropped. The only really secure way is to use SSL.
Otherwise, you could keep track of the users's IP address in the session object. If someone tries to use that session
from a different IP, you deny the request. "

You are aware that every request from AOL comes from a different IP address.

AOL is not the only one, the only time the ip address works is for a local intranet app.

Even users from my own house would not work since all the computers go thru a router, so everyone in the house
has the same IP.

This solution would never work.

Joe

Comment #15 (Posted by pcbear)

can you give the full source code in C#??

Comment #16 (Posted by augusten)

I've been planning to use the great crypto built in to .NET to encrypt my querystrings for a while now, and lo and
behold I find your article. Saves me a lot of time, thanks!

Regarding Matias comments: In the real world, SSL and sessions are a poor solution in many cases because they
are costly in terms of performance. I am responsible for an app that tens of thousands need to access
simultaneously using as little bandwidth and processing power as possible. Querystrings are the only way to go.

Sure, if you are passing highly sensitive data (i.e. credit card numbers) you use SSL (duh). But the the majority of
the time, it's name, street address, email address, and the like, data which is semi-public to begin with, but you don't
want the public using your website to pull up said data. In these cases it's not the interception of the encrypted
querystring that needs to be prevented, but rather the ability to pull up any customer's data by changing a
querystring id.

Comment #17 (Posted by Turino)

I just tried to finallize the C# code from Jhon Mandia, I've tested it and it works...

Thanks to John Mandia...

using System.Text;
using System.Security.Cryptography;

public class Encryption64
{
//private byte[] key = {};

Page 7 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

//private byte[] IV = {10, 20, 30, 40, 50, 60, 70, 80}; // it can be any byte value

public static string Decrypt(string stringToDecrypt,
string sEncryptionKey)
{

byte[] key = {};
byte[] IV = {10, 20, 30, 40, 50, 60, 70, 80};
byte[] inputByteArray = new byte[stringToDecrypt.Length];

try
{
key = Encoding.UTF8.GetBytes(sEncryptionKey.Substring(0,8));
DESCryptoServiceProvider des = new DESCryptoServiceProvider();
inputByteArray = Convert.FromBase64String(stringToDecrypt);

MemoryStream ms = new MemoryStream();
CryptoStream cs = new CryptoStream(ms, des.CreateDecryptor(key, IV), CryptoStreamMode.Write);
cs.Write(inputByteArray, 0, inputByteArray.Length);
cs.FlushFinalBlock();

Encoding encoding = Encoding.UTF8 ;
return encoding.GetString(ms.ToArray());
}
catch (System.Exception ex)
{
throw ex;
}
}

public static string Encrypt(string stringToEncrypt,
string sEncryptionKey)
{

byte[] key = {};
byte[] IV = {10, 20, 30, 40, 50, 60, 70, 80};
byte[] inputByteArray; //Convert.ToByte(stringToEncrypt.Length)

try
{
key = Encoding.UTF8.GetBytes(sEncryptionKey.Substring(0,8));
DESCryptoServiceProvider des = new DESCryptoServiceProvider();
inputByteArray = Encoding.UTF8.GetBytes(stringToEncrypt);
MemoryStream ms = new MemoryStream();
CryptoStream cs = new CryptoStream(ms, des.CreateEncryptor(key, IV), CryptoStreamMode.Write);
cs.Write(inputByteArray, 0, inputByteArray.Length);
cs.FlushFinalBlock();

return Convert.ToBase64String(ms.ToArray());
}
catch (System.Exception ex)
{
throw ex;
}
}
}

Comment #18 (Posted by John Mandia)

Thanks for tidying up my code....with all the things going on I forgot to finish the c# code off. Thanks for finishing it.

John

Comment #19 (Posted by John Mandia)

Page 8 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

Just read through this article again and thought wouldn't it make implementation easier if you added the replace
functionality with the Decrypt method? This would mean that people using this class would not need to worry about
always using replace throught their site.

just a thought.

What are people's opinions?

John

Comment #20 (Posted by Tiberius)

John:

Excellent point. Adding the replace in the Decrypt method makes much more sense.

Tiberius

Comment #21 (Posted by John Mandia)

Hi Tiberius,

Just sent you a mail asking if you would mind me writing a quick article based on this one.

Taken the c# version of the code that I contributed and extended it.

Basically the methods can be overloaded for 1 so that users have the option of either supplying the encryption key
or getting it from the Web.config file (as it makes more sense to me....you can change the settings for the entire site
from one place) another additional feature is to take into account oddities (Like the fact that the QueryString
replaces + with a space) I have added a method to the class an additional parameter to the Decrypt methods so that
you can handle the oddities. e.g Decrypt(string stringToDecrypt, int forType)

forType represents what type of code is calling this decryption e.g 0 default 1 Querystring.
forType and stringToDecrypt get sent to a private method that does a switch based on forType. In the case of
sending 1 it knows a querystring wants this so it replaces " " with "+" and then sends it back.

This way as more quirks appear you can handle it within your private method and the users of the component don't
have to worry about it. And you could also add addition forTypes as they arise (maybe down the road someone says
Request.Form does something for example...this could become forType =2).

Now only two things are bugging me, (1) should I make all the methods static and (2) Everything compiles but I am
trying to fix an error.

As my intention is to share this code with everyone I was wondering if you would like to have a look and see where I
am tripping up.

Thanks,

John

Comment #22 (Posted by an unknown user)

O.K,

Got the class working now with the features mentioned previously and it's CLS compliant so you can use it from
VB.NET or any other .NET language.

I'll be posting the code up soon if anyone is interested.

John

Comment #23 (Posted by test)

test

Page 9 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

Comment #24 (Posted by Simon H)

Hi John,

Not sure if you still look at this posting any more as it is a little old now! If you are still around did you ever post your
new code? Just I would be interested in taking a look.

Cheers

Simon

Comment #25 (Posted by Kelly)

Hi, I wonder if you've come accross this when using the code. I'm using asp.net
Example:
when passing in the URL "....aspx?MemberRef =" 117 or 114 or 260 or 264 where number is encrypted and then
calling
txtMemberRef.Text = Sec.Decrypt(MemberRef, ConfigurationSettings.AppSettings("Key"))
It works perfectly..
But when I try to use member ref 262 or 259 I get
"Invalid length for a Base-64 char array." when trying to decrypt.
Any help greatly appreciated!
Thanks

Comment #26 (Posted by urfie)

I'm a newbie to encryption, so i kinda need some help understanding
this. I am unclear as to how the flow of information goes. is there
anyway i can get an explanation or a diagram?

for example, if the client wants to send some data to the server, that
client needs to encrypt it before sending it. so i'm guessing the server
needs to send the key to the client so that the client will know how
to encrypt?

am i understanding that correctly? is there a danger that someone will
be able to eavesdrop when the server is sending the key, then, when
the client sends the info back, the eavesdropper can use the key to decrypt?

Comment #27 (Posted by Suneel)

I believe the VB.Net version of this code is at: http://www.eggheadcafe.com/articles/20020315.asp

There is a comment in the code regarding the definition of IV bytes, and the code shows the VB.Net representation
of Hexadecimal numbers (&H prefix). This should be changed to 0x in C#.

Comment #28 (Posted by parshu)

hi Tiberius ,

gr8 article. Solved my problem within minutes. Thanx.

Comment #29 (Posted by Senthil Nathan)

I am in C#. How to use the c# code for Encrypting Querystrings. I have tried the two methods but i get the error

"The type or namespace ExtractAndSerialize could not be found
The type or namespace oES could not be found"

here, i have used the namespaces
using System.Text;

Page 10 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

using System.Security.Cryptography;
using System.IO;
using System.Xml;
anyone help me out....

Comment #30 (Posted by angry)

Am I a fool? You write an article and don't offer the source code?????????????????

Comment #31 (Posted by Petrovsky)

Uh, You are a fool. The SC is in the article.

Comment #32 (Posted by an unknown user)
Rating
code doesn't work like it should. Plus, he left out the c# code, then says it will be posted later, but is never posted (2
years have gone by)all I wanna know is how to replace the stinkin "Plus" signs.

Comment #33 (Posted by an unknown user)
Rating
outdated code:"Invalid length for a Base-64 char array." when trying to decrypt.

Comment #34 (Posted by BG)
Rating
When I try to decrypt a GUID Value it gives me an error "Invalid length for a Base-64 char array."I am trying to
encrypt and decrypt the following string"A1C1AEB2-3C75-43D9-9F97-46EE1E0038D9"I am using VB.NET
code.Any help will be greatly appreciated

Comment #35 (Posted by an unknown user)
Rating
using System; using System.IO; using System.Xml; using System.Text; using System.Security.Cryptography; public
class Encryption64 { private byte[] key = {}; private byte[] IV = {18, 52, 86, 120, 144, 171, 205, 239}; public string
Decrypt(string stringToDecrypt, string sEncryptionKey) { byte[stringToDecrypt.Length] inputByteArray; try { key =
System.Text.Encoding.UTF8.GetBytes(Left(sEncryptionKey, 8)); DESCryptoServiceProvider des = new
DESCryptoServiceProvider(); inputByteArray = Convert.FromBase64String(stringToDecrypt); MemoryStream ms =
new MemoryStream(); CryptoStream cs = new CryptoStream(ms, des.CreateDecryptor(key, IV),
CryptoStreamMode.Write); cs.Write(inputByteArray, 0, inputByteArray.Length); cs.FlushFinalBlock();
System.Text.Encoding encoding = System.Text.Encoding.UTF8; return encoding.GetString(ms.ToArray()); } catch
(Exception e) { return e.Message; } } public string Encrypt(string stringToEncrypt, string SEncryptionKey) { try { key
= System.Text.Encoding.UTF8.GetBytes(Left(SEncryptionKey, 8)); DESCryptoServiceProvider des = new
DESCryptoServiceProvider(); byte[] inputByteArray = Encoding.UTF8.GetBytes(stringToEncrypt); MemoryStream
ms = new MemoryStream(); CryptoStream cs = new CryptoStream(ms, des.CreateEncryptor(key, IV),
CryptoStreamMode.Write); cs.Write(inputByteArray, 0, inputByteArray.Length); cs.FlushFinalBlock(); return
Convert.ToBase64String(ms.ToArray()); } catch (Exception e) { return e.Message; } } }

Comment #36 (Posted by Dietmar)
Rating
Very helpful article and code. What would I need to change to have it output only alphanumerics in the encrypted
string? I need to encrypt a few values after another to be used in a URL and only alphanumerics would be much
cleaner. Thanks!

Comment #37 (Posted by Michiel Erasmus)
Rating
Anser to Comment #25; I have had the same problem but solved it by using the same encryptionkey. Watch out not
to include spaces. Ek hoop dat dit vir jou iets waardevols is. met vriendelike groet, Michiel Erasmus

Comment #38 (Posted by an unknown user)
Rating
Doesn't work very well, will not work on some values, so whats the point if values are going to be dynamic.

Comment #39 (Posted by Paul Talbot)
Rating
For all those who are having trouble converting VB.Net to C#, take a look at Reflector by Lutz Roeder.
http://www.aisto.com/roeder/dotnet/ This will help you figure out the VB.Net > C# > Delphi > IL conversions. Good
article btw, I will be making use of this.

Page 11 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

Comment #40 (Posted by an unknown user)
Rating
Good information, but you've failed to be helpful enough to mention where these class(es) exist in the framework

Comment #41 (Posted by an unknown user)
Rating
Good information, but you've failed to be helpful enough to mention where these class(es) exist in the framework

Comment #42 (Posted by John)
Rating
Does not work when Encrypted value has double forward slashes, because .NET Request automatically takes that
as Single Slash, and correspondind Decryption fails. Please let me know if you fix this bug. Thanks

Comment #43 (Posted by an unknown user)
Rating
Thankyou very much Tiberius - really solves ASP DOTNET to old ASP session state issue. Now just need to work
out how to go the other way using the same kind of thing

Comment #44 (Posted by an unknown user)
Rating
Comment (Posted by Ankit) Excellent article Tiberius - Really thanks for solving my problem. Can you please write
the explanation of each line you coded, So that we can actully underdstand the magic of your code.

Comment #45 (Posted by an unknown user)
Rating
Comment (Posted by Ankit) Excellent article Tiberius - Really thanks for solving my problem. Can you please write
the explanation of each line you coded, So that we can actully underdstand the magic of your code.

Submit Comment

Sponsored Links

Finally, a professional Visual Basic printout.
That's PrettyCode.Print - http://www.prettycode.com

 Privacy | Terms Of Use | Contact Us | Advertising Info We're Hosted By: fullcontrolnetwork

Copyright 1998-2005 vbCity.com, LLC. All rights reserved. Powered by ArticleLive Article Management Software

Page 12 of 12DevCity.NET :: Encrypting QueryStrings with .NET

10/7/2005http://www.devcity.net/Articles/47/1/encrypt_querystring.aspx

